A comparison of sequence and structure protein domain families as a basis for structural genomics

نویسندگان

  • Arne Elofsson
  • Erik L. L. Sonnhammer
چکیده

MOTIVATION Protein families can be defined based on structure or sequence similarity. We wanted to compare two protein family databases, one based on structural and one on sequence similarity, to investigate to what extent they overlap, the similarity in definition of corresponding families, and to create a list of large protein families with unknown structure as a resource for structural genomics. We also wanted to increase the sensitivity of fold assignment by exploiting protein family HMMs. RESULTS We compared Pfam, a protein family database based on sequence similarity, to Scop, which is based on structural similarity. We found that 70% of the Scop families exist in Pfam while 57% of the Pfam families exist in Scop. Most families that occur in both databases correspond well to each other, but in some cases they are different. Such cases highlight situations in which structure and sequence approaches differ significantly. The comparison enabled us to compile a list of the largest families that do not occur in Scop; these are suitable targets for structure prediction and determination, and may be useful to guide projects in structural genomics. It can be noted that 13 out of the 20 largest protein families without a known structure are likely transmembrane proteins. We also exploited Pfam to increase the sensitivity of detecting homologs of proteins with known structure, by comparing query sequences to Pfam HMMs that correspond to Scop families. For SWISSPROT+TREMBL, this yielded an increase in fold assignment from 31% to 42% compared to using FASTA only. This method assigned a structure to 22% of the proteins in Saccharomyces cerevisiae, 24% in Escherichia coli, and 16% in Methanococcus jannaschii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic target selection for structural genomics on eukaryotes.

A central goal of structural genomics is to experimentally determine representative structures for all protein families. At least 14 structural genomics pilot projects are currently investigating the feasibility of high-throughput structure determination; the National Institutes of Health funded nine of these in the United States. Initiatives differ in the particular subset of "all families" on...

متن کامل

The SUPERFAMILY database in 2007: families and functions

The SUPERFAMILY database provides protein domain assignments, at the SCOP 'superfamily' level, for the predicted protein sequences in over 400 completed genomes. A superfamily groups together domains of different families which have a common evolutionary ancestor based on structural, functional and sequence data. SUPERFAMILY domain assignments are generated using an expert curated set of profil...

متن کامل

The CATH database: an extended protein family resource for structural and functional genomics

The CATH database of protein domain structures (http://www.biochem.ucl.ac.uk/bsm/cath_new) currently contains 34 287 domain structures classified into 1383 superfamilies and 3285 sequence families. Each structural family is expanded with domain sequence relatives recruited from GenBank using a variety of efficient sequence search protocols and reliable thresholds. This extended resource, known ...

متن کامل

SUPFAM - a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes

Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alig...

متن کامل

SUPFAM - Database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: Implications for structural genomics and function annotation in genomes

Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins concerned are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 1999